#### The Chinese University of Hong Kong Joint Graduate Seminar Dec 2010

# p53 - The Demons of the Guardian of the Genome

Ms. Jo Cheung (PhD Candidate) Department of Microbiology Supervisor: Prof. Paul Chan

# What is p53?

- "Protein" 53 kilodaltons (a measure of protein size)
- Tumour suppressor protein
- p53 is a transcription factor and DNA binding protein that plays a critical role in the network of signals that control the fate of a cell
- major p53 dependent responses; DNA repair, cell cycle arrest, and programmed cell death or apoptosis
- it is the most commonly mutated tumor suppressor in human cancers

# History of p53



ATM, ataxia-telangiectasia mutated; IGF1, insulin-like growth factor 1; miRNA, microRNA.

### Organization of the Human TP53 Gene



Located on chromosome 17
11 exons (blue), UTR (red)
Spans 16-20 kb DNA
Coding for an mRNA 2.2kb in length
393 amino acids

Adapted from: http://p53.free.fr/p53\_info/p53\_gene.html

# Missense Mutations are Clustered in the DBD



Adapted from: http://www-p53.iarc.fr/SlideShow2009\_fichiers/texto.html

# The p53 Pathway



Adapted from Levine A et al., Nature Reviews Cancer 9, 749-758 (October 2009)

# **Regulation of p53 by MDM2**



Moll UT et al., Mol Cancer Res. 2003 Dec;1(14):1001-8

#### Apoptotic Pathways Activated by p53



Vousden K et al., Nature Reviews Cancer 2,594-604 (August 2002)

## **Examples of p53 Target Genes**

| Gene name              |  |  |
|------------------------|--|--|
| Apoptosis and survival |  |  |
| APAF1                  |  |  |
| BAX                    |  |  |
| FAS                    |  |  |
| FDXR                   |  |  |
| IGF-BP3                |  |  |
| KILLER/DR5             |  |  |
| NOXA                   |  |  |
| p53AIP1                |  |  |
| p53DINP1               |  |  |
| PERP                   |  |  |
| PIDD                   |  |  |
| PIG3                   |  |  |
| PIG8/ei24              |  |  |
| PTEN                   |  |  |
| PUMA                   |  |  |
| WIP1                   |  |  |

| Cell-cycle arrest and DNA repair |    |
|----------------------------------|----|
| BTG2                             |    |
| CDKN1A                           |    |
| 14-3-3-σ                         |    |
| GADD45                           |    |
| p53R2                            |    |
|                                  |    |
| Angiogenesis and invasi          | on |

TSP1 (thombospondin)

GD-AIF

BAI1

MMP2

MASPIN

KAI1



# wt-p53 versus mutant p53: two sides of the same coin



*Strano S et al.,Oncogene* (2007) **26,** 2212–2219.

#### Majority of TP53 Mutations are Missense

Inherited: present in the **germ line** and detectable in both healthy and cancer cells

**Somatic**: acquired during development and present only cells undergoing clonal expansion

#### Germline

Somatic



## Frequent p53 Mutations



\* Structural, # Contact

### p53 Somatic Mutation are Frequent in Human Cancers



http://cshperspectives.cshlp.org/content/2/1/a001008.full.html#ref-list-1

### p53 Germline Mutations Predispose to Several Types of Cancers



http://cshperspectives.cshlp.org/content/2/1/a001008.full.html#ref-list-1

### **Breast Cancer Incidence**

Most Common Cancer in Women Worldwide

- Estimated 1.38 million new cancer cases diagnosed in 2008 (23% of all cancers)
- Ranks 2nd overall (10.9% of all cancers) (GloboScan 2008)
- Ranks 5<sup>th</sup> in among female cancer deaths worldwide
- In Hong Kong 2007, ranks 1<sup>st</sup> in most common cancer
- Ranks 3<sup>rd</sup> among female cancer deaths (Hong Kong Cancer Registry)

## Number of studies that have shown an <u>Association or Lack of Association</u> of **p53** mutation with poor survival



n = The cumulative number of
patients in all cohorts reported
in those studies for each
cancer type

Robles Al et al., Cold Spring Harb Perspect Biol. 2010 Mar; 2(3): a001016

### Kaplan-Meier Survival Curves with Breast Cancer

#### Stratified by p53 gene mutation status



### Kaplan-Meier Survival Curves with Breast Cancer

Stratified by the type of p53 gene mutation



**Blue** =without mutation, or with silent mutation

**Red** = with missense mutation, outside DBS **Green**= with missense mutation, in DBS **Black** = with mutation, other than missense

Olivier M et al., Clin Can Res 2006; 12 (4) 1157-1167

Blue = with Y220C mutation Green= with G245S Black = with any other missense mutations Red = with R248W Purple = with any missense mutation at 179

# In some Cancers, p53 is Targeted for Degradation

#### p53 Protein is Targetted by Viruses



#### p53 Protein Is Inactivated In Specific Types Of Cancers Where TP53 Mutations Are Unfrequent

| Cancer          | TP53 mutation<br>frequency | Inactivating protein |
|-----------------|----------------------------|----------------------|
|                 |                            |                      |
| Neuroblastoma   | < 2%                       | Twist                |
| Sarcomas        | < 20%                      | Mdm2                 |
| Retinoblastoma  | < 1%                       | Mdm4                 |
| Cervical cancer | < 10%                      | E6 (HPV)             |

# To summarize...

- p53 plays a critical role in controlling signalling pathways and keep improper cell proliferation and tumour formation in check
- p53 and it's downstream genes consist of a complicated gene network
- functional inactivation seriously compromises the cellular processes resulting in decreased apoptosis and loss of cell cycle control
   tumourogenesis

# To summarize...

- Mutant p53 proteins not only represent a mere LOSS of wt-p53 function
- But GAIN additional oncogenic functions to promote to the development, maintenance and spreading and resistance to anticancer treatment of a tumour
- Increasing the understanding of p53 mediated pathways will provide intervention and therapeutic agents to awaken the sleeping guardian and may hold the key to more successful therapy for many cancers

# The End

